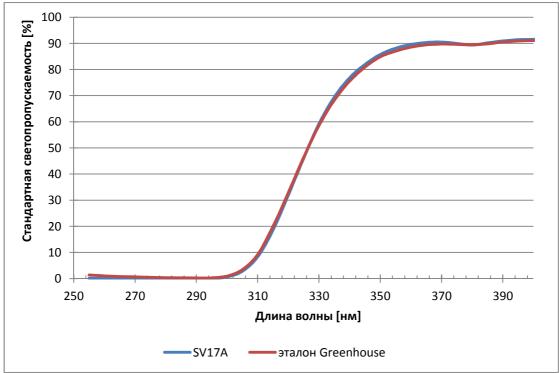


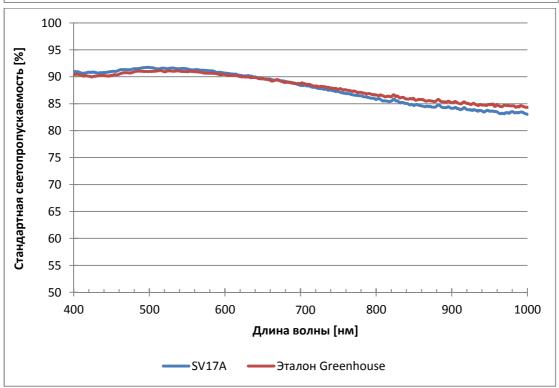
Общие положения

Клиент	ООО Экспо Гласс
Дата	26 января 2017
Научный сотрудник	ВИда Мохаммадхани
Примечание	• Размер образца, положение при измерении, маркировка:
	T hemispherical/ Т полусферическое излучение Т перпендикулярное излучение Дымка/рассеянное излучение УФ излучение УФ излучение
	50 cm
	Образец очищается с помощью деминерализованной воды и высушивается горячим воздухом

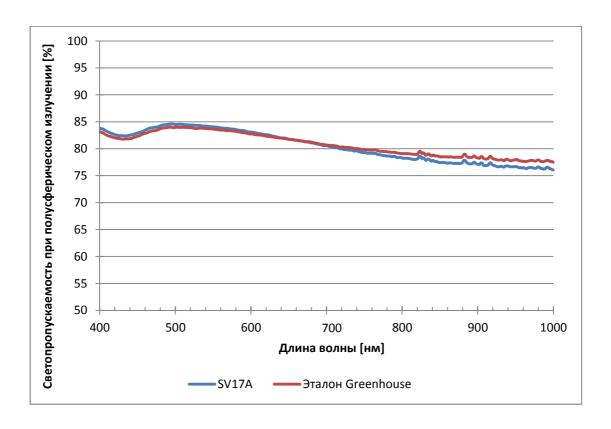
Результаты

Средние значения


Измерение	WUR	Т полусферич.	Т стандартное	Рассеянное	Дымка
(приложение)	код				
Метод (приложение)		WUR-TNO	WUR-TNO		WUR-TNO
Среднее значение (приложение)		NEN 2675	NEN 2675	не рассчитывается	не рассчитывает
Экспо Гласс	SV17A	83.1 ± 0.5%	90.7 ± 0.5%	нет	4 ± 5%
Эталон Greenhouse		82.7 ± 0.5%	90.3 ± 0.5%	нет	4 ± 5%


Измерение (приложение)	УФ	УФА	УФВ	УФ при 320 нм	
		(400-315nm)	(315-280nm)		
Среднее значение (приложение)	EN 410 (280-380 нм)	не рассчитывается	не рассчитывается	не рассчитывается	
Экспо Гласс	72.5 ± 0.5%	76.2	3.8	31.9	
Эталон Greenhouse	71.9 ± 0.5%	75.7	4.3	32.7	

	Угол наклона							
Образец	10	20	30	40	50	60	70	80
Экспо Гласс	90.6	90.5	90.2	89.5	87.8	82.7	70.4	43.7
Эталон Greenhouse	90.3	90.2	89.9	89.1	87.4	82.3	70.0	42.8



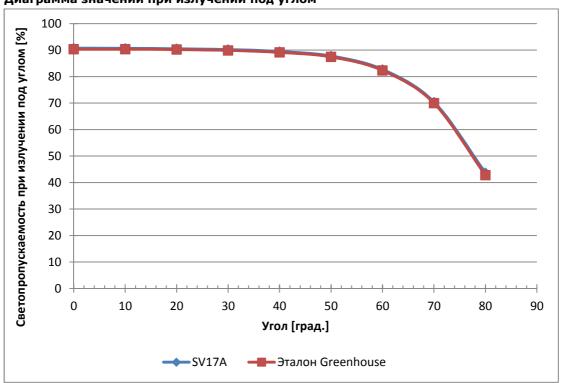


Диаграмма значений при излучении под углом

Приложение Измерения и определения

Диапазон длин волн

- **УФ** Ультрафиолетовое излучение УФ-В (300-320 нм) и УФ-А (320-400 нм) относится к морфологии растений, наличию вредителей и болезней растений в теплицах.
- VIS Свет, который является видимым для человеческого глаза (380-780 нм)
- NIR Ближнее инфракрасное излучение NIR (800-2500nm) способствует повышению температуры в теплице.
- **PAR** Фотосинтетическое активное излучение PAR (400-700 нм) имеет важное значение для развития и фотосинтеза растений.
- **Солнечное** излучение (300-2500 нм) является мерой общего количества энергии, поступающей в теплицу от солниа.
- FR Дальнее инфракрасное излучение FR (700-800nm) относится к морфологии растений и цветению.
- **IR** Тепловое излучение 2,5-50 пм. Что касается пропускаемости, чем меньше пропускание инфракрасного излучения, тем меньше потери тепла в теплице
- * Измерения проводятся на образцах, предоставленных клиентом. Клиент несет ответственность за репрезентативные выборки из партии материала (см. также NEN 2674 или Kwaliteitshandboek voor de kassenbouw).
- ** Измерения светопропускания, отражения, рассеяния выполняются в одной точке образца. Результат измерения приводится в протоколе, включая погрешность измерения. Клиент несет ответственность за предоставление однородных образцов. В случае, если образцы не являются однородными, он должен поручить выполнение анализа однородности для надлежащей интерпретации результатов измерений.
- ***Измерения светопропускания, отражения, рассеяния и теплового излучения проводятся на сухих материалах. Значения, полученные путем измерения на влажных материалах, являются лишь ориентировочными. Оптические свойства материалов во влажных условиях теплицы могут отличаться от результатов измерений, полученных в лабораторных условиях.

Светопропускаемость

Прямая светопропускаемость Тх, где х — угол падения излучения

Угол падения — угол между лучом света, падающим на поверхность и линией, перпендикулярной поверхности в точке падения, называется стандартным. Прямая светопропускаемость для x ° определяется как коэффициент пропускания света с углом падения x.

Стандартная светопропускаемость T стандартная, T_n , To

Стандартная светопропускаемость определяется, как светопропускаемость при перпендикулярно падающем свете, что означает, что угол падения <8°.

Светопропускаемость при полусферическом излучении \emph{T} полусферическая, \emph{Them}

Рассеянный свет состоит из лучей света, падающих со всех сторон и с определенным угловым распределением. Полусферическое рассеянное излучение — это излучение с угловым распределением при условии «стандартного равномерного неба», стандартной яркости, которая не изменяется в зависимости от азимута и высоты. Стандартный падающий солнечный свет в полевых условиях практически не встречается. Угол падения солнечного света на крышу теплицы меняется в течение суток и в течение года. Кроме того, излучение, падающее на землю, имеет полусферическую, непрямую часть, и, особенно в северных регионах существует тесная взаимосвязь между количеством света в теплице и пропусканием полусферического излучения через материал для покрытия теплицы. Поэтому, пропускаемость

излучения является лучшим показателем эффективности материала для покрытия, чем стандартная светопропускаемость.

Все результаты измерения светопропускаемости представлены в виде средневзвешенного значения в соответствии с голландским стандартом NEN2675 (NEN, 1990) (таблица 1). Все измерения светопропускаемости соответствуют техническим условиям, приведенным в протоколе измерений, составленном Wageningen UR Greenhouse Horticulture и TNO, для измерения материалов для покрытия теплиц, кроме однослойного стекла с зеркальным покрытием (протокол TNO DTM 034-2010-03385).

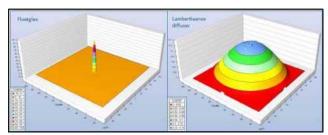
Таблица 1. Весовые коэффициенты по NEN 2675, где A_K является результатом, полученным при вычислении соотношения спектральной плотности стандартного источника света D65 и относительной чувствительности растений.

λ [нм] 400	Ал 47.28	λ [HM] 500	Ал 78.11	λ [нм] 600	Ал 77.15
410	53.59	510	78.54	610	78.08
420	56.06	520	77.84	620	77.68
430	53.25	530	81.54	630	74.96
440	65.91	540	80.54	640	76.54
450	75.22	550	81.75	650	74.31
460	77.42	560	80	660	75.63
470	77.12	570	78.44	670	78.75
480	79.49	580	79.37	680	76.04
490	76.17	590	74.75	690 700	68.72 71.61

Светоотражаемость Стандартная светоотражаемость

Стандартная светоотражаемость (R стандартная, R_n) определяется, как светоотражаемость при перпендикулярно падающем свете, что означает, что угол падения $<8^\circ$.

Рассеянное


Дымка

Дымка определяется как часть пропускаемого света, которая рассеивается в большей мере, чем отклонение входного угла падения. Дымка, измеряемая Wageningen UR Greenhouse Horticulture, определяется как количество (интенсивность) света, который отклоняется более чем на 1,5 ° от входного угла, расположенного перпендикулярно образцу.

Рассеивание

Значение рассеивания определяется как процент от максимального рассеивания от 0% (нет рассеивания) до 100% (ламбертовское рассеивание) и рассчитывается по двунаправленной функции распределения рассеивания (BSDF) образца и значению ламбертовского рассеивателя, с поправкой на эталонный луч. После деления BSDF на их общую интенсивность, BSDF ламбертовского рассеивателя вычитается из эталонного значения BSDF образца и вычисляется стандартное отклонение (std_{3T} , std_{06p} .). Значение рассеивания рассчитывается как (1 - std_{06p} ./ std_{3T} .) 2 X 100.

Диаграммы BSDF флоат-стекла (слева) и ламбертовского рассеивателя.

Тепловое излучение

Тепловой эффект

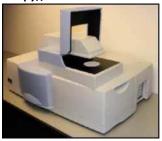
Тепловой эффект материала является показателем пропускаемости ИК излучения через материал при длине волн от 7 до 14 мкм. Чем меньше тепловой эффект, тем меньше пропускаемость ИК излучения и тем меньше потери тепла. Тепловой эффект является производным от значения пропускания ИК излучения и отражаемости, измеренных

с помощью спектрометра Varian FT-IR.

Эмиссия

Показатель эмиссии материала относится к поглощению ИК излучения материалом. Вместе с пропускаемостью ИК излучения он определяет энергетический баланс теплицы.

Однородность


Однородность светопропускаемости материалов для покрытия теплиц может оцениваться путем измерения пропускания перпендикулярно направленного света на определенное количество точек на образце материала определенного размера.

Средняя светопропускаемость (PAR 400-700 нм) рассчитывается также, как стандартное отклонение. Количество точек и размер материала влияет на точность определения однородности, предполагаемая однородность материала определяет количество необходимых точечных измерений.

Угол контакта

Угол контакта — угол, под которым капля воды попадает на твердую поверхность. Это дает количественную оценку гидрофобности (водоотталкивания) материала. Большой угол контакта указывает на гидрофобность материала, маленький угол контакта указывает на гидрофильность материала,

Оборудование

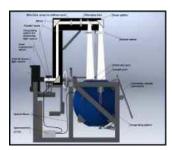
Спектрофотометр Perkin Elmer LAMBDA 950 UV/VIS/NIR

LAMBDA 950 представляет собой высокоточную систему UV/VIS/NIR для измерения стандартного пропускания излучения под углом 8° в диапазоне длин волн от 300 до 2500 нм. Прибор оснащен UL270 Интегрирующим сферическим устройством для измерения диффузных материалов. С помощью данного устройства можно измерить пропускание солнечного света (300-2500 нм), пропускание для УФ (300-400 нм), дальнего инфракрасного излучения (700-800 нм) и ближнего инфракрасного излучения (800-2500 нм).

© 2017

Спектрофотометр Varian

Для обеспечения возможности качественного определения теплового поведения пластиковых пленок,


необходимо знать значение пропускания дальнего инфракрасного излучения. Тепловое излучение при температуре около 300 К (комнатной температуре) находится в пределах волнового диапазона примерно от 3 до 100 пм. Измерения до 25 пм составляют около 85% теплового излучения, измерения до 50 пм -около 95%. Измерения пропускания ИК излучения осуществляются с помощью спектрофотометра Varian для инфракрасного излучения. С помощью данного оборудования спектральные значения

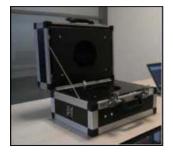
пропускания ИК-излучения могут измеряться для волн длиной 1000 нм < λ < 100.000 нм (1 пм < λ < 100 пм). Входное отверстие – 3 см³.

Выполняются два цикла измерений, в первую очередь для диапазона 3-20 пм, затем, для диапазона 20-100 пм.

Представлены графики от 3-50 пм, взвешенных с кривой Планка при температуре в теплице $T=20\,^{\circ}$ С. После измерения пропускания ИК-излучения можно измерить отражаемость ИК-излучения для однородных материалов. На основании значения пропускания и отражаемости ИК излучения, можно рассчитать значение эмиссии ИК-излучения.

Transvision

Система Transvision состоит из большой интегрирующей сферы с внутренним диаметром 1 м, спектрометра с матрицей ПСЗ, ксенонового источника света, она разработана согласно ISO 13468. Устройство соответствует техническим условиям протокола измерений, составленного TNO и Wageningen UR (Ruigrok, 2008) (Swinkels, 2012). Устройство измеряет пропускание углового и полусферического излучения, а также спектральные значения дымки (1,5°) в диапазоне 350-2000 нм для прозрачных и рассеянных


материалов. Устройство специально разработано для измерения толстых и многослойных материалов и больших образцов материалов, которые нельзя разрезать, таких,

IS-SA™

IS-SA (сфера с воспроизведением изображения для точечных и внешних измерений) измеряет функции распределения рассеивания для диффузных материалов. На основании данных измерений BSDF можно рассчитать показатели для дымки и рассеивания.

Прибор для измерения эмиссии

Для определения эмиссии (неоднородных) материалов используется устройство TNO для измерения ИК-излучения.

как листы закаленного или структурированного стекла.

Прибор Kruss для измерения угла контакта

Применяется прибор Kruss для измерения угла контакта G1, который измеряет угол контакта, под которым капли воды падают на твердую поверхность типа G1. С помощью данного метода с применением гониометра - микроскопа угол контакта неподвижной капли на выровненной поверхности может измеряться вручную. Можно получать статические и динамические (возрастающие/убывающие) углы контакта.

Литература

Институт стандартизации Нидерландов NEN, 1990. NEN 2675: Стекло тепличное - Определение светопропускания, <u>www.nen.nl</u>.

Руигрок, Дж., Суинкельс, G.L.A.M, 2010. Lichtmeetprotocol kasdekmaterialen. Протокол TNO 034-DTM-2010-03385.

Swinkels, G.L.A.M. 2012. TRANSVISION: Система измерения светопропускания материалов для покрытия теплиц. Acta Hort. (ISHS) 956:563-568

Swinkels, G.L.A.M.; Hemming, S.; Mohammadkhani, V.; Ruijven, J.P.M. van 2013. Протокол для измерения светопропускания стекла для садоводства. Протокол 1252 Wageningen UR.

© 2017 Вагенинген, Foundation Stichting Wageningen Research (WR), научно-исследовательский институт исследования растений Вагенинген. Все права защищены. Никакая часть настоящей публикации не подлежит воспроизведению, хранению в поисковой системе или передаче в любой форме или с помощью любых средств, электронных, механических, с помощью фотокопирования, записи или иным способом без предварительного письменного разрешения от WR, научно-исследовательского института исследования растений Вагенинген, Подразделение Greenhouse Horticulture.

Foundation WR не несет ответственности за любой ущерб, причиненный использованием содержания настоящего протокола.